DISEÑO Y CONSTRUCCIÓN DE UN ACCESO DIRECTO A MEMORIA UTILIZANDO EL LENGUAJE VHDL Y LOS DISPOSITIVOS FPGA: UNA REVISIÓN SITEMÁTICA DE LITERATURA

  • Oscar Cumbicus Pineda Universidad Nacional de Loja
  • Dayanna Alvarado Castillo Universidad Nacional de Loja
  • Josué Ortega Jaramillo Universidad Nacional de Loja
Palabras clave: FPGA, HDL, Arquitectura de computadoras

Resumen

El presente trabajo es una revisión sistemática de la literatura es el resultado de un trabajo previo para la construcción de un Acceso Directo a Memoria (DMA) utilizando el lenguaje de descripción de hardware VHDL, los dispositivos Field-programmable gate array (FPGA) y algunos algoritmos para la programación de estos dispositivos, el objetivo principal de este estudio es proporcionar una metodología eficaz para modelar el controlador de la DMA asegurando un acceso adecuado a los datos optimizando los recursos para cada una de las transacciones relevantes, otro objetivo es conocer las diferentes arquitecturas que existen y la configuración de los dispositivos para una implementación mucho más simple y óptima, la investigación literaria incluye un marco de referencia del proceso de Revisión Sistemática de la Literatura sobre estudios primarios centrados en la búsqueda de artículos relacionados con la arquitectura, el diseño y los algoritmos utilizados para construir el Controlador DMA utilizando FPGA y VHDL. Los resultados de la revisión muestran que hay una gran variedad de arquitecturas DMA, el uso de las mismas depende del tipo de transmisión que se quiera realizar y de los tipos de datos involucrados en la transacción, también hay varios modelos de diseño en múltiples lenguajes de programación y modelado, de acuerdo con la arquitectura de la DMA, existe la arquitectura mejorada del controlador que ayuda en gran medida a reducir la latencia de procesamiento, así como la presencia de una arquitectura específica necesaria para la lectura/escritura de imagen y vídeo

Descargas

La descarga de datos todavía no está disponible.

Citas

Ammendola, R., Biagioni, A., Frezza, O., Cicero, F. Lo, Lonardo, A., Paolucci, P. S., … Vicini, P. (2013). Virtual-to-Physical address translation for an FPGA-based interconnect with host and GPU remote DMA capabilities. FPT 2013 - Proceedings of the 2013 International Conference on Field Programmable Technology, 58–65. https://doi.org/10.1109/FPT.2013.6718331

Aswal, D., Singh, K., & Yadav, V. (2015). DESIGNING OF DMA CONTROLLER USING VHDL. 1(12), 608–612.

Bernardi, P., Cantoro, R., Gianotto, L., Restifo, M., Sanchez, E., Venini, F., & Appello, D. (2017). A DMA and CACHE-based stress schema for burn-in of automotive microcontroller. LATS 2017 - 18th IEEE Latin-American Test Symposium. https://doi.org/10.1109/LATW.2017.7906767

Biglari, M., Qasemi, E., & Pourmohseni, B. (2013). Maestro: A high performance AES encryption/decryption system. Proceedings - 17th CSI International Symposium on Computer Architecture and Digital Systems, CADS 2013, 145–148. https://doi.org/10.1109/CADS.2013.6714255

Didariya, A., Jasrotia, H. S., Gupta, R., Gurjar, S., & Tripathi, M. N. (2016). International Journal of Current Engineering and Technology Design and Implementation of Generic DMA using Vhdl. 856| International Journal of Current Engineering and Technology, 6(3), 856–861. Retrieved from http://inpressco.com/category/ijcet

Enami, T., Kawakami, K., & Yamazaki, H. (2015). DMA-driven control method for low power sensor node. 2015 IEEE Topical Conference on Wireless Sensors and Sensor Networks, WiSNet 2015, 53–55. https://doi.org/10.1109/WISNET.2015.7127418

Fjeldtvedt, J., & Orlandić, M. (2019). CubeDMA – Optimizing three-dimensional DMA transfers for hyperspectral imaging applications. Microprocessors and Microsystems, 65, 23–36. https://doi.org/10.1016/j.micpro.2018.12.009

Gonzalez, C., Lopez, S., Mozos, D., & Sarmiento, R. (2015). FPGA Implementation of the HySime Algorithm for the Determination of the Number of Endmembers in Hyperspectral Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(6), 2870–2883. https://doi.org/10.1109/JSTARS.2015.2425731

Google Académico. (n.d.). Retrieved August 21, 2020, from https://scholar.google.com.ec/
Home | Microsoft Academic. (n.d.). Retrieved August 21, 2020, from https://academic.microsoft.com/home

IEEE Xplore. (n.d.). Retrieved August 21, 2020, from https://ieeexplore.ieee.org/Xplore/home.jsp

Ji, F., Aji, A. M., Dinan, J., Buntinas, D., Balaji, P., Thakur, R., … Ma, X. (2012). DMA-assisted, intranode communication in GPU accelerated systems. Proceedings of the 14th IEEE International Conference on High Performance Computing and Communications, HPCC-2012 - 9th IEEE International Conference on Embedded Software and Systems, ICESS-2012, 461–468. https://doi.org/10.1109/HPCC.2012.69

Kavianipour, H., Muschter, S., & Bohm, C. (2014). High performance FPGA-based DMA interface for pcie. IEEE Transactions on Nuclear Science, 61(2), 745–749. https://doi.org/10.1109/TNS.2014.2304691

Khedkar, A. A., & Khade, R. H. (2017). High speed FPGA-based data acquisition system. Microprocessors and Microsystems, 49, 87–94. https://doi.org/10.1016/j.micpro.2016.11.006

Kitchenham, B. (2004). Procedures for Performing Systematic Literature Reviews. Joint Technical Report, Keele University TR/SE-0401 and NICTA TR-0400011T.1, 33.

Li, W., Zhao, Y., Liu, Y., & Chen, M. (2018). SMEFF: A scalable memory extension fabric for FPGA. 2017 International Conference on Field-Programmable Technology, ICFPT 2017, 2018-January, 40–47. https://doi.org/10.1109/FPT.2017.8280119

Li, Y., Cai, D., & Xu, Y. (2018). Improved DMA Algorithm for the PXIE Bus. (38), 1–5. https://doi.org/10.1145/3271553.3271591

Mantovani, P., Cota, E. G., Pilato, C., Di Guglielmo, G., & Carloni, L. P. (2016, October 13). Handling large data sets for high-performance embedded applications in heterogeneous systems-on-chip. 1–10. https://doi.org/10.1145/2968455.2968509

Morales, H., Duran, C., & Roa, E. (2019). A Low-Area Direct Memory Access Controller Architecture for a RISC-V Based Low-Power Microcontroller. 2019 IEEE 10th Latin American Symposium on Circuits and Systems, LASCAS 2019 - Proceedings, 97–100. https://doi.org/10.1109/LASCAS.2019.8667579

Mukherjee, S., Costa, F., Paul, R., Chakrabarti, A., Khan, S. A., Mitra, J., & Nayak, T. (2016). An efficient approach to evaluate PCIe DMA design and DMA performance for Common Readout Unit (CRU). Retrieved from https://inis.iaea.org/search/search.aspx?orig_q=RN:48040449

Ng, H. C., Choi, Y. M., & So, H. K. H. (2013). Direct virtual memory access from FPGA for high-productivity heterogeneous computing. FPT 2013 - Proceedings of the 2013 International Conference on Field Programmable Technology, 458–461. https://doi.org/10.1109/FPT.2013.6718414

Nguyen, H. K., Dong, K. P., & Tran, X. T. (2019). A reconfigurable multi-function dma controller for high-performance computing systems. NICS 2018 - Proceedings of 2018 5th NAFOSTED Conference on Information and Computer Science, 344–349. https://doi.org/10.1109/NICS.2018.8606841

RefSeek - Academic Search Engine. (n.d.). Retrieved August 21, 2020, from https://www.refseek.com/

Rota, L., Caselle, M., Chilingaryan, S., Kopmann, A., & Weber, M. (2015a). A new DMA PCIe architecture for Gigabyte data transmission. 2014 19th IEEE-NPSS Real Time Conference, RT 2014 - Conference Records. https://doi.org/10.1109/RTC.2014.7097561

Rota, L., Caselle, M., Chilingaryan, S., Kopmann, A., & Weber, M. (2015b). A PCIe DMA Architecture for Multi-Gigabyte per Second Data Transmission. IEEE Transactions on Nuclear Science, 62(3), 972–976. https://doi.org/10.1109/TNS.2015.2426877

ScienceDirect.com | Science, health and medical journals, full text articles and books. (n.d.). Retrieved August 21, 2020, from https://www.sciencedirect.com/

Scopus preview - Scopus - Welcome to Scopus. (n.d.). Retrieved August 21, 2020, from https://www.scopus.com/home.uri

Shanehsazzadeh, F., & Sadri, M. S. (2017). Area and performance evaluation of central DMA controller in Xilinx embedded FPGA designs. 2017 25th Iranian Conference on Electrical Engineering, ICEE 2017, 546–550. https://doi.org/10.1109/IranianCEE.2017.7985100

Tiwari, A., & Advanced, T. (2011). AMBA DEDICATED DMA CONTROLLER WITH. 4(1), 285–288.

Tumeo, A., Monchiero, M., Palermo, G., Ferrandi, F., & Sciuto, D. (2008). Lightweight DMA management mechanisms for multiprocessors on FPGA. Proceedings of the International Conference on Application-Specific Systems, Architectures and Processors, 275–280. https://doi.org/10.1109/ASAP.2008.4580191

Vanita, V. S. (2004). Direct Memory Access ( DMA ) Controller. Internatonal Journal of Innovative Research in Technology, 1(June), 1069–1071.

Wang, Y., Wang, T., Zhou, P., & Wang, X. (2014). Design and implementation of a flexible DMA controller in video codec system. International Conference on Digital Signal Processing, DSP, 2014-January, 78–82. https://doi.org/10.1109/ICDSP.2014.6900804

Ye, X., Li, Y., Du, Y., & Cai, Z. (2017). Design of data transmission system for speed measurement radar between ARM and FPGA based on embedded Linux. 2016 IEEE International Conference on Signal and Image Processing, ICSIP 2016, 343–346. https://doi.org/10.1109/SIPROCESS.2016.7888281

Zhao, Y., Li, M., Zhang, Y., Lin, Q., & Chen, Z. (2017). Research on FPGA timing optimization methods with large on-chip memory resource utilization in PCIe DMA. 2016 CIE International Conference on Radar, RADAR 2016. https://doi.org/10.1109/RADAR.2016.8059429
Publicado
2020-10-04
Estadísticas
Resumen 41
PDF 31
Cómo citar
Cumbicus Pineda, O., Alvarado Castillo, D., & Ortega Jaramillo, J. (2020). DISEÑO Y CONSTRUCCIÓN DE UN ACCESO DIRECTO A MEMORIA UTILIZANDO EL LENGUAJE VHDL Y LOS DISPOSITIVOS FPGA: UNA REVISIÓN SITEMÁTICA DE LITERATURA. Journal of Science and Research: Revista Ciencia E Investigación. ISSN 2528-8083, 5(4), 136 - 163. Recuperado a partir de https://revistas.utb.edu.ec/index.php/sr/article/view/930
Sección
Artículo de Revisión