Evaluación in vitro del potencial antagonista de Trichoderma sp. y hongos endófitos de mora (Rubus glaucus Benth) para el control de Botrytis cinerea
Palabras clave:
Control biológico, Clonostachys, endófito, moho gris Trichoderma.Resumen
Uno de los principales problemas fitosanitarios en los cultivos de mora (Rubus glaucus Benth) del Ecuador es el hongo Botrytis cinerea causante de la enfermedad del “moho gris”. El objetivo de este estudio fue determinar la capacidad antagónica de cuatro hongos frente al patógeno B. cinerea. Para llevar a cabo esta investigación se aislaron dos microorganismos endófitos del cultivo de mora (Clonostachys sp. y Alternaria sp.) y se utilizaron aislados de Trichoderma asperellum y Trichoderma sp. de la colección de INIAP. Se utilizó la técnica de cultivos duales. Se utilizó la escala de Bell para evaluar el antagonismo y se calculó el porcentaje de inhibición del crecimiento micelial para el efecto antagónico. T. asperellum y Trichoderma sp. alcanzaron el grado I en la escala de Bell, donde el antagonista inhibió el crecimiento de B. cinerea en un 75.1% y 73.7% respectivamente; mientras que el aislado de Clonostachys sp. alcanzó el grado II y se observó que sus esporas parasitaron los esclerocios de B. cinerea. Por otro lado, el asilado de Alternaria sp. se ubicó en grado III, lo cual no se consideró eficiente para inhibir el crecimiento del hongo patógeno.
Descargas
Citas
Alwang, J., Barrera, V.H., Andrango, G., Domı́nguez, J.M., Martı́nez, A., Escudero, L., & Montúfar, C. (2019). Value-chains in the Andes: upgrading for Ecuador’s blackberry producers. Journal of Agricultural Economics, 70(3), 705–730. https://doi.org/ 10.1111/1477-9552.12329.
Barnett, H. L., & Hunter B. B. (1998). Illustrated genera of imperfect fungi. Minnesota: APS Press.
Bell, D. K., Wells, H. D., & Markham, C. R. (1982). In vitro antagonism of Trichoderma species against six fungal plant pathogens. Phytopathology, 72(4), 379-382. https://doi.org/10.1094/Phyto-72-379
Bertoni, M. (1988). Interactions between epiphytes and endophytes from the phyllosphere of Eucalyptus uiminalis. Nova Bedwigina, 47, 219.
Calvo, J. A., Rivera, G., Orozco, S., & Rodríguez, R. O. (2012). Aislamiento y evaluación in vitro de antagonistas de Botrytis cinerea en mora. Agronomía mesoamericana, 23(2), 225-231.
Cota, L. V., Maffia, L.A., Mizubuti, E. S. G., Macedo P. E. F., & Antunes, R.F. (2008). Biological control of strawberry gray mold by Clonostachys rosea under field conditions. Biological Control, 46, 515-522. https://doi.org/10.1016/j.biocontrol.2008.04.023
Cosseboom, S., Schnabel, G., & Hu, M. (2020). Competitive ability of multi-fungicide resistant Botrytis cinerea in a blackberry planting over three years. Pesticide Biochemistry and Physiology, 163, 1-7. https://doi.org/10.1016/j.pestbp.2019.11.008
Flores, W., Chico, J., & Cerna, L. (2015). Actividad antagónica in vitro de Clonostachys rosea sobre Fusarium oxysporum, Alternaria solani y Botrytis cinerea. Revista Científica de la Facultad de Ciencias Biológicas. 35(1), 34-42.
Gong, C., Liu, Y., Liu, S., Cheng, M., Zhang, Y., Wang, R., Chen, H., Li, J., Chen, X., & Wang, A. (2017). Analysis of Clonostachys rosea-induced resistance to grey mould disease and identification of the key proteins induced in tomato fruit. Postharvest Biology and Technology, 123, 83-93. https://doi.org/10.1016/j.postharvbio.2016.08.004
Infante, D., Martínez, B., González, N., & Reyes, Y. (2009). Mecanismos de acción Trichoderma frente a hongos fitopatógenos. Protección Vegetal 24(1): 14-21.
Iza, M., Viteri, P., Hinojosa, M., Martínez, A., Sotomayor Correa, A., & Viera, W. (2020). Morphological, phenological and pomological differentiation of commercial cultivars of blackberry (Rubus glaucus Benth). Enfoque UTE, 11(2), pp. 47-57. https://doi.org/10.29019/enfoque.v11n2.529
Kleper, A. (2017). Control de Botrytis cinerea Pers. en fresa (Fragaria x ananassa duch.) Cv. Aromas mediante fungicidas biológicos y - químicos en Huaral. Lima: Universidad Nacional Agraria La Molina.
Mamarabadi M., Jensen, B., Jensen, D., & Lubeck, M. (2008). Real‐time RT‐PCR expression analysis of chitinase and endoglucanase genes in the three‐way interaction between the biocontrol strain Clonostachys rosea IK726, Botrytis cinerea and strawberry. FEMS Microbiology Letters, 285(1): 101-110. https://doi.org/10.1111/j.1574-6968.2008.01228.x
Marín, M., Ribera, G., Villalobos, K., Orozco, R., & Orozco S. (2017). Evaluación de hongos antagonistas de Botrytis cinerea Pers. en plantaciones de mora, Costa Rica. Agronomía Costarrisense. 41(1), 7-18. https://doi.org/10.15517/rac.v41i1.29737
Martínez, A., Villacís, L., Viera, W., Jácome, R., Espín, M., León, O., & Santana, R. (2019). Evaluación de nuevas tecnologías de producción limpia de la mora de castilla (Rubus glaucus Benth), en la zona Andina de Ecuador, para un buen vivir de los fruticultores. Journal of the Selva Andina Biosphere, 7(1), 63-70.
Massey, F. J. (1951). The Kolmogorov-Smirnov test for goodness of fit. Journal of the American Statistical Association, 46(253), 68-78. https://doi.org/10.1080/01621459.1951.10500769
Nobre, S. A., Maffia, L. A., Mizubuti, E. S., Cota, L. V., & Dias, A. P. S. (2005). Selection of Clonostachys rosea isolates from Brazilian ecosystems effective in controlling Botrytis cinerea. Biological Control, 34(2), 132-143. https://doi.org/10.1016/j.biocontrol.2005.04.011
Pertot, I., Geovannini, O., Benanchi, M., Caffi, T., Rossi, V., & Mugnai, L. (2017). Combining biocontrol agents with different mechanisms of action in a strategy to control Botrytis cinerea on grapevine. Crop Protection, 97(1), 85-93. https://doi.org/10.1016/j.cropro.2017.01.010
Ribera, A. (2007), Evaluación y caracterización de la actividad antifúngica de la especie Quillaja saponaria Mol. cultivada in vitro en Botrytis cinerea Pers. Temuco: Universidad de la Frontera.
Rodríguez, M. R., & Chico, J. R. (2013). Efecto antagónico in vitro de Clonostachys rosea sobre Botrytis cinerea procedente de cultivos de Vitis vinífera. Rebiol, 33(2), 42-49.
Schirmböck, M., Lorito, M., Wang, Y., Hayers, C., Arisan, I., Scala, F., Harman, G., & Kubicek, C. (1994). Parallel formation and synergism of hydrolytic enzymes and peptaibol antibiotics, molecular mechanisms involved in the antagonistic activity of Trichoderma harzianum against phytopathogenic fungi. Applied and Environmental Microbiology, 60, 4364-4370.
Skidmore, A. M., & Dickinson, C. H. (1976). Colony interactions and hyphal interference between Septoria nodorum and phylloplane fungi. Transactions of the British Mycological Society, 66(1), 57-64. https://doi.org/10.1016/S0007-1536(76)80092-7
Toledo, A. V., Virla, E., Humber, R. A., Paradell, S. L., & López C. C. (2006). First record of Clonostachys rosea (Ascomycota: Hypocreales) as an entomopathogenic fungus of Oncometopia tucumana and Sonesimia grossa (Hemiptera: Cicadellidae) in Argentina. Journal of Invertebrate Pathology, 92(1), 7-10. https://doi.org/10.1016/j.jip.2005.10.005
Vásquez, M. (2013). Acción antagónica in vitro de Clonostachys rosea f. sobre el crecimiento de Botrytis cinerea pers. Y Fusarium oxysporum f procedente de Asparragus officinalis L. SAGASTEGUIANA, 1(1), 19-28.
Vásquez, W., Pupiales, P., Viteri, P., Sotomayor, A., Feicán, C., Campaña, D., & Viera, W. (2019). Chemical scarification and use of gibberellic acid for seed germination of blackberry cultivars (Rubus glaucus Benth). Interciencia, 44(3), 161-166.
Villares, M., Martínez, A., Viteri, P., Viera, W., Jácome, R., Ayala, G., & Noboa, M. (2016). Manejo de plagas identificadas en el cultivo de la mora de Castilla. In: El cultivo de la mora en el Ecuador. Galarza, D.; Garcés, S.; Velásquez, J.; Sánchez, V.; Zambrano J. (eds.). Quito: INIAP.
Viera, W., Noboa, M., Martínez, A., Báez, F., Jácome, R., Medina, L., & Jackson, T. (2019a). Trichoderma asperellum increases crop yield and fruit weight of blackberry (Rubus glaucus) under subtropical Andean conditions. Vegetos, 32(2), 209-215. https://doi.org/10.1007/s42535-019-00024-5
Viera, W., Sotomayor, A., & Viteri, P. (2019b). Breeding of three Andean fruit crops in Ecuador. Chronica Horticulturae, 59(4), 20-29.
Viera, W., & Jackson, T. (2020). Ecuador demonstrates a sustainable way forward for small farmer producers. Chronica horticulturae, 60(3), 19-22.
Viera, W., Tello, C., Martínez, A., Navia, D., Medina, L., Delgado, A., Perdomo, C., Pincay, A., Báez, F., Vásquez, W., & Jackson, T. (2020a). Biological control: A tool for sustainable agriculture, a point of view of its benefits in Ecuador. Journal of Selva Andina Biosphere, 8(2), 128-149. https://doi.org/10.36610/j.jsab.2020.080200128x
Viera, W., Noboa, M., Martínez, A., Jácome, R., Medina, L., & Jackson, T. (2020b). Trichoderma application increases yield and individual fruit weight of blackberries grown by small farmers in Ecuador. Acta Horticulturae, 1277, 287-291. https://doi.org/10.17660/ActaHortic.2020.1277.42
Viteri, P., Vásquez, W., Viera, W., Sotomayor, A., & Mejía, P. (2016). Ecología para el desarrollo y crecimiento de la mora. In: El cultivo de la mora en el Ecuador. Galarza, D.; Garcés, S.; Velásquez, J.; Sánchez, V.; Zambrano J. (eds.). Quito: INIAP.
You L., Zangh L., Wu M., Yang L., Chen W., & Li G. (2016). Multiple criteria-based screening of Trichoderma isolates for biological control of Botrytis cinerea on tomato. Biological Control, 101, 31-38. https://doi.org/10.1016/j.biocontrol.2016.06.006
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Los autores mantienen los derechos sobre los artículos y por tanto son libres de compartir, copiar, distribuir, ejecutar y comunicar públicamente la obra bajo las condiciones siguientes:
Reconocer los créditos de la obra de la manera especificada por el autor o el licenciante (pero no de una manera que sugiera que tiene su apoyo o que apoyan el uso que hace de su obra).
No utilizar esta obra para fines comerciales.
Declaración de privacidad
Los nombres y direcciones de correo-e introducidos en esta revista se usarán exclusivamente para los fines declarados por esta revista y no estarán disponibles para ningún otro propósito u otra persona.