Control vectorial en la integración de sistemas eólico de velocidad variable
Palabras clave:
Conversor, Energía eólica, Inversor, Sistema de controlResumen
La energía eólica es una fuente en constante crecimiento, cuya integración en los sistemas eléctricos de potencia (SEP) genera diversos impactos. Este articulo evalúa las variables del sistema de conversión back-to-back con un generador PMSG, bajo diferentes restricciones operativas. El generador se controla para optimizar la transferencia de energía a la red y garantizar su comportamiento ante una falla simétrica en el sistema. El documento presenta una descripción completa de la dinámica del sistema en distintos escenarios, y tanto la modelación como la simulación se realizaron utilizando el software PLECs.
Descargas
Citas
Abdel-Khalik, A. S., Elserougi, A. A., & Massoud, A. M. (2015). Control and stability analysis of PMSG-based wind turbines with back-to-back PWM converters. Electric Power Systems Research, 124, 59–69. https://doi.org/10.1016/j.epsr.2015.02.014
Bouneb F., B. E. M., & Gaubert, J. P. (2019). Back-to-back converter control for PMSG-based wind energy generation systems under grid disturbances. International Journal of Electrical Power & Energy Systems, 109, 498–508. https://doi.org/10.1016/j.ijepes.2019.02.038
Cardenas, R. (2012). Control Vectorial de Máquinas de Inducción de Doble Excitación. Santiago.
Carlsson, A. (1988). The back to back converter control and design The Back-to-back converter. Department of Industrial Electrical Engineering and Automation, Lund Institute of Technology.
Chen, G., Wang, H., & Gao, F. (2021). Advanced fault-tolerant control for PMSG wind turbines. Control Engineering Practice, 113, 104878. https://doi.org/10.1016/j.conengprac.2021.104878
Chinchilla, M., Arnaltes, S., & Burgos, J. C. (2006). Control of permanent-magnet generators applied to variable-speed wind-energy systems connected to the grid. IEEE Transactions on Energy Conversion, 21(1), 130–135.
D., C. M. M., & Luque, J. (2009). VECTOR CONTROL OF PMSG FOR GRID-CONNECTED WIND TURBINE APPLICATIONS.
Diaz, M. J. P. (2011). DISEÑO, SIMULACIÓN E IMPLEMENTACIÓN DE UN EÓLICA PARA ESTUDIOS DE COMPORTAMIENTO ANTE FALLAS EN LA RED ELECTRICA.
Jalilvand, A., Sharafi, M., & El-Fouly, T. H. (2020). A robust control scheme for grid-connected PMSG wind turbines. IEEE Transactions on Energy Conversion, 35(4), 1912–1920. https://doi.org/10.1109/TEC.2020.2998505
Jiang, J., Gong, J., & Li, X. (2020). A novel back-to-back converter control strategy for improving the stability of PMSG-based wind turbines during low-voltage ride through (LVRT). IEEE Transactions on Energy Conversion, 35(4), 1853–1863. https://doi.org/10.1109/TEC.2020.2997501
Kim, K. H., Jeung, Y. C., Lee, D. C., & Kim, H. G. (2010). Robust control of PMSG wind turbine systems with back-to-back PWM converters. The 2nd International Symposium on Power Electronics for Distributed Generation Systems, 433–437.
Kumar, P., & Akhtar, N. (2022). Advanced control strategies for PMSG-based wind energy conversion systems. International Journal of Electrical Power & Energy Systems, 137, 107796. https://doi.org/10.1016/j.ijepes.2021.107796
PLECs. (2013), https://www.plexim.com/academy
Singh, B., Sharma, S., & Chandra, A. (2019). Modeling and control of PMSG-based wind energy conversion system for grid integration. Electric Power Systems Research, 175, 105922. https://doi.org/10.1016/j.epsr.2019.105922
Xin, W., Mingfeng, C., Li, Q., Lulu, C., & Bin, Q. (2013). Control of Direct-drive Permanent-magnet Wind Power System Grid-Connected Using Back-to-back PWM Converter. Intelligent System Design and Engineering Applications (ISDEA), 2013 Third International Conference On, 478–481.
Yaramasu, V., Wu, B., & Kouro, S. (2016). Model predictive control of back-to-back converters in wind energy systems. IEEE Transactions on Industrial Electronics, 63(8), 5053–5061. https://doi.org/10.1109/TIE.2016.2535333
Zhang, X., Chen, Z., & Wu, W. (2020). Modeling and control of a back-to-back converter in PMSG-based wind energy systems for grid integration. IEEE Transactions on Energy Conversion, 35(2), 606–615. https://doi.org/10.1109/TEC.2020.2976901
Zhang, Z., Hackl, C., Wang, F., Chen, Z., & Kennel, R. (2013). Encoderless model predictive control of back-to-back converter direct-drive permanent-magnet synchronous generator wind turbine systems. 2013 15th European Conference on Power Electronics and Applications, 1–10.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Journal of Science and Research

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Los autores mantienen los derechos sobre los artículos y por tanto son libres de compartir, copiar, distribuir, ejecutar y comunicar públicamente la obra bajo las condiciones siguientes:
Reconocer los créditos de la obra de la manera especificada por el autor o el licenciante (pero no de una manera que sugiera que tiene su apoyo o que apoyan el uso que hace de su obra).
No utilizar esta obra para fines comerciales.
Declaración de privacidad
Los nombres y direcciones de correo-e introducidos en esta revista se usarán exclusivamente para los fines declarados por esta revista y no estarán disponibles para ningún otro propósito u otra persona.