Enfoques genómicos y transcriptómicos hacia la selección de plantas

  • Seyed Mehdi Jazayeri Universidad Nacional de Colombia
  • Ronald Villamar Torres Université de Montpellier
Palabras clave: genomics, omics, plant selection, plant improvement


La era Omica ha abierto una nueva ventana a la biología. La genómica y la transcriptómica son dos campos conocidos, con los cuales, la selección y el mejoramiento de plantas se estudian con mayor facilidad y precisión. Proporcionan información útil sobre los genes, las transcripciones, sus funciones y sirven como datos primordiales para otros enfoques posteriores. Los genomas de referencia de varias plantas han sido secuenciados, y están disponibles, facilitando así el acceso a información ómica indispensable para llevar a cabo estudios basados ​​en estos mismos genomas. El total de datos genómicos, transcriptómicos y los hallazgos de métodos variantes que van desde QTL (rasgo cuantitativo), PSN (polimorfismo de un solo nucleótido), NCV (número de copias variante), GBS (genoma por secuencia) son extremadamente importantes para la selección y el mejoramiento de plantas en términos de precio y tiempo. Los nuevos flujos de trabajo utilizan diferentes enfoques basados ​​en la información genómica / transcriptómica en pasos posteriores mezclándolos y se validan durante todo el proceso para seleccionar genotipos que posean un rasgo deseado agronómicamente importante. SNP-Seq, que se presenta en este artículo, es un nuevo enfoque para analizar las plantas hacia la selección y la detección mediante secuenciación de SNP en varios genotipos simultáneamente. Este proceso puede acelerar el ciclo de selección de plantas desde los genotipos a los fenotipos en una forma de ingeniería inversa.  


La descarga de datos todavía no está disponible.


Aubourg, S., Lecharny, A., and Bohlmann, J. (2002). Genomic analysis of the terpenoid synthase (attps) gene family of arabidopsis thaliana. Molecular Genetics and Genomics, 267(6):730–745.

Ayala, L., Henry, M., Van Ginkel, M., Singh, R., Keller, B., and Khairallah, M. (2002). Identification of qtls for bydv tolerance in bread wheat. Euphytica, 128(2):249–259.

Bartoli, C. and Roux, F. (2017). Genome-wide association studies in plant pathosystems: Toward an ecological genomics approach. Frontiers in plant science, 8.

Bayat, A. (2002). Science, medicine, and the future: Bioinformatics. BMJ: British Medical Journal, 324(7344):1018. Bevan, M. W., Uauy, C., Wulff, B. B., Zhou, J., Krasileva, K., and Clark, M. D. (2017). Genomic innovation for crop improvement. Nature, 543(7645):346–354.

Borrill, P., Adamski, N., and Uauy, C. (2015). Genomics as the key to unlocking the polyploid potential of wheat. New Phytologist, 208(4):1008–1022.

Brachi, B., Morris, G. P., and Borevitz, J. O. (2011). Genome- wide association studies in plants: the missing heritability is in the field. Genome biology, 12(10):232.

Brown, P. J., Rooney, W. L., Franks, C., and Kresovich, S. (2008). Efficient mapping of plant height quantitative trait loci in a sorghum association population with introgressed dwarfing genes. Genetics, 180(1):629–637.

Brozynska, M., Furtado, A., and Henry, R. J. (2016). Genomics of crop wild relatives: expanding the gene pool for crop improvement. Plant biotechnology journal, 14(4):1070–1085.

Crossa, J., Beyene, Y., Kassa, S., Pérez, P., Hickey, J. M., Chen, C., De Los Campos, G., Burgueño, J., Windhausen, V. S., Buckler, E., et al. (2013). Genomic prediction in maize breeding populations with genotyping-by-sequencing. G3: Genes, Genomes, Genetics, 3(11):1903–1926.

Desta, Z. A. and Ortiz, R. (2014). Genomic selection: genome-wide prediction in plant improvement. Trends in plant science, 19(9):592–601.

Ding, Z., Weissmann, S., Wang, M., Du, B., Huang, L., Wang, L., Tu, X., Zhong, S., Myers, C., Brutnell, T. P., et al. (2015). Identification of photosynthesis-associated c4 candi- date genes through comparative leaf gradient transcriptome in multiple lineages of c3 and c4 species. PLoS One, 10(10):e0140629.

Druka, A., Potokina, E., Luo, Z., Jiang, N., Chen, X., Kearsey, M., and Waugh, R. (2010). Expression quantitative trait loci analysis in plants. Plant biotechnology journal, 8(1):10–27. Edwards, D. and Batley, J. (2004). Plant bioinformatics: from genome to phenome. Trends in biotechnology, 22(5):232–237.

Elshire, R. J., Glaubitz, J. C., Sun, Q., Poland, J. A., Kawamoto, K., Buckler, E. S., and Mitchell, S. E. (2011). A robust, simple genotyping-by-sequencing (gbs) approach for high diversity species. PloS one, 6(5):e19379.

Fracasso, A., Magnanini, E., Marocco, A., and Amaducci, S. (2017). Real-time determination of photosynthesis, transpiration, water-use efficiency and gene expression of two sorghum bicolor (moench) genotypes subjected to dry- down. Frontiers in Plant Science, 8.

Ganal, M. W., Polley, A., Graner, E.-M., Plieske, J., Wieseke, R., Luerssen, H., and Durstewitz, G. (2012). Large snp arrays for genotyping in crop plants. Journal of biosciences, 37(5):821–828.

Golicz, A. A., Bayer, P. E., Barker, G. C., Edger, P. P., Kim, H., Martinez, P. A., Chan, C. K. K., Severn-Ellis, A., Mc- Combie, W. R., Parkin, I. A., et al. (2016). The pangenome of an agronomically important crop plant brassica oleracea. Nature communications, 7:13390.

Gong, S., Hao, Z., Meng, J., Liu, D., Wei, M., and Tao, J. (2015). Digital gene expression analysis to screen disease resistance-relevant genes from leaves of herbaceous peony (paeonia lactiflora pall.) infected by botrytis cinerea. PloS one, 10(7):e0133305.

Habyarimana, E., Parisi, B., and Mandolino, G. (2017). Genomic prediction for yields, processing and nutritional qual- ity traits in cultivated potato (solanum tuberosum l.). Plant Breeding, 136(2):245–252.

Hamid, J. S., Hu, P., Roslin, N. M., Ling, V., Greenwood, C. M., and Beyene, J. (2009). Data integration in genetics and genomics: methods and challenges. Human genomics and proteomics: HGP, 2009.

Heffner, E. L., Jannink, J.-L., and Sorrells, M. E. (2011). Genomic selection accuracy using multifamily prediction models in a wheat breeding program. The Plant Genome, 4(1):65–75.

Heidaritabar, M. (2015). Accuracy of quantitative trait nu-cleotide (qtn) prediction by surrounding snps.

Horgan, R. P. and Kenny, L. C. (2011). ‘omic’technologies: genomics, transcriptomics, proteomics and metabolomics. The Obstetrician & Gynaecologist, 13(3):189–195.

Huang, X. and Han, B. (2014). Natural variations and genome-wide association studies in crop plants. Annual review of plant biology, 65:531–551.

Jazayeri, S. M., Melgarejo Muñoz, L. M., and Romero, H. M. (2015). Rna-seq: A glance at technologies and methodologies. Acta Biológica Colombiana, 20(2):23–35.

Jin, M., Liu, H., He, C., Fu, J., Xiao, Y., Wang, Y., Xie, W., Wang, G., and Yan, J. (2016). Maize pan-transcriptome provides novel insights into genome complexity and quantitative trait variation. Scientific reports, 6.

Kang, Y. J., Lee, T., Lee, J., Shim, S., Jeong, H., Satyawan, D., Kim, M. Y., and Lee, S.-H. (2016). Translational genomics for plant breeding with the genome sequence explosion. Plant biotechnology journal, 14(4):1057–1069.

Khan, S., Nabi, G., Ullah, M. W., Yousaf, M., Manan, S., Siddique, R., and Hou, H. (2016). Overview on the role of advance genomics in conservation biology of endangered species. International journal of genomics, 2016.

Kwong, Q. B., Teh, C. K., Ong, A. L., Heng, H. Y., Lee, H. L., Mohamed, M., Low, J. Z.-B., Apparow, S., Chew, F. T., Mayes, S., et al. (2016). Development and validation of a high-density snp genotyping array for african oil palm. Molecular plant, 9(8):1132–1141.

Li, H., Chen, G., and Yan, W. (2015). Molecular characterization of barley 3h semi-dwarf genes. PloS one, 10(3):e0120558.

Li, J., Zhu, L., Hull, J. J., Liang, S., Daniell, H., Jin, S., and Zhang, X. (2016). Transcriptome analysis reveals a com- prehensive insect resistance response mechanism in cotton to infestation by the phloem feeding insect bemisia tabaci (whitefly). Plant biotechnology journal, 14(10):1956–1975.

Lister, R., Gregory, B. D., and Ecker, J. R. (2009). Next is now: new technologies for sequencing of genomes, tran- scriptomes, and beyond. Current opinion in plant biology, 12(2):107–118.

Lu, F., Romay, M. C., Glaubitz, J. C., Bradbury, P. J., Elshire, R. J., Wang, T., Li, Y., Li, Y., Semagn, K., Zhang, X., et al. (2015). High-resolution genetic mapping of maize pan-genome sequence anchors. Nature communications, 6.

Lu, K., Peng, L., Zhang, C., Lu, J., Yang, B., Xiao, Z., Liang, Y., Xu, X., Qu, C., Zhang, K., et al. (2017). Genome-wide association and transcriptome analyses reveal candidate genes underlying yield-determining traits in brassica napus. Frontiers in plant science, 8.

Mackay, T. F., Stone, E. A., and Ayroles, J. F. (2009). The genetics of quantitative traits: challenges and prospects. Nature Reviews Genetics, 10(8):565–577.

Mammadov, J., Aggarwal, R., Buyyarapu, R., and Kumpatla, S. (2012). Snp markers and@articlemontenegro2017pangenome, title=The pangenome of hexaploid bread wheat, author=Montenegro, Juan D and Golicz, Agnieszka A and Bayer, Philipp E and Hurgobin, Bhavna and Lee, HueyTyng and Chan, Chon-Kit Kenneth and Visendi, Paul and Lai, Kaitao and Dolezˇel, Jaroslav and Batley, Jacqueline and others, journal=The Plant Journal, volume=90, number=5, pages=1007–1013, year=2017, publisher=Wiley Online Library their impact on plant breeding. International journal of plant genomics, 2012.

Miles, C., Wayne, M., et al. (2008). Quantitative trait locus (qtl) analysis. Nature Education, 1(1):208.

Morgante, M. (2013). Structural variation and the plant pan genomes. EMBnet. journal, 19(A):p–11.

Müller, B. S., Neves, L. G., de Almeida Filho, J. E., Resende, M. F., Muñoz, P. R., dos Santos, P. E., Paludzyszyn Filho, E., Kirst, M., and Grattapaglia, D. (2017). Genomic prediction in contrast to a genome-wide association study in explaining heritable variation of complex growth traits in breeding populations of eucalyptus. BMC genomics, 18(1):524.

Newell, M. A. and Jannink, J.-L. (2014). Genomic selection in plant breeding. Crop Breeding: Methods and Protocols, pages 117–130.

Rival, A. (2017). Breeding the oil palm (elaeis guineensis jacq.) for climate change. OCL, 24(1):D107.
Robinson, G. E., Banks, J. A., Padilla, D. K., Burggren, W. W., Cohen, C. S., Delwiche, C. F., Funk, V., Hoekstra, H. E., Jarvis, E. D., Johnson, L., et al. (2010). Empowering 21st century biology. BioScience, 60(11):923–930.

Rocha, R. B., Barros, E. G., Cruz, C. D., Rosado, A. M., and Araujo, E. F. d. (2007). Mapping of qtls related with wood quality and developmental characteristics in hybrids (eucalyptus grandis x eucalyptus urophylla). Revista Árvore, 31(1):13–24.

Roth, M. S., Cokus, S. J., Gallaher, S. D., Walter, A., Lopez, D., Erickson, E., Endelman, B., Westcott, D., Larabell, C. A., Merchant, S. S., et al. (2017). Chromosome-level genome assembly and transcriptome of the green alga chromochloris zofingiensis illuminates astaxanthin production. Proceedings of the National Academy of Sciences, 114(21):E4296–E4305.

Sandmann, S., de Graaf, A. O., van der Reijden, B. A., Jansen, J. H., and Dugas, M. (2017). Glm-based optimization of ngs data analysis: A case study of roche 454, ion torrent pgm and illumina nextseq sequencing data. PloS one, 12(2):e0171983.

Shendure, J. and Aiden, E. L. (2012). The expanding scope of dna sequencing. Nature biotechnology, 30(11):1084–1094.

Shikha, M., Kanika, A., Rao, A. R., Mallikarjuna, M. G., Gupta, H. S., and Nepolean, T. (2017). Genomic selection for drought tolerance using genome-wide snps in maize. Frontiers in plant science, 8.

Sierro, N., Battey, J. N., Ouadi, S., Bakaher, N., Bovet, L., Willig, A., Goepfert, S., Peitsch, M. C., and Ivanov, N. V. (2014). The tobacco genome sequence and its comparison with those of tomato and potato. Nature communications, 5.

Silva-Junior, O. B., Faria, D. A., and Grattapaglia, D. (2015). A flexible multi-species genome-wide 60k snp chip de- veloped from pooled resequencing of 240 eucalyptus tree genomes across 12 species. New Phytologist, 206(4):1527–1540.

Singh, N., Jayaswal, P. K., Panda, K., Mandal, P., Kumar, V., Singh, B., Mishra, S., Singh, Y., Singh, R., Rai, V., et al. (2015). Single-copy gene based 50 k snp chip for genetic studies and molecular breeding in rice. Scientific reports, 5.

Singh, R., Ong-Abdullah, M., Low, E.-T. L., Manaf, M. A. A., Rosli, R., Nookiah, R., Ooi, L. C.-L., Ooi, S.-E., Chan, K.-L., Halim, M. A., et al. (2013). Oil palm genome sequence reveals divergence of interfertile species in old and new worlds. Nature, 500(7462):335–339.

Skuse, G. R. and Du, C. (2008). Bioinformatics tools for plant genomics. International journal of plant genomics, 2008.

Slater, A. T., Cogan, N. O., Forster, J. W., Hayes, B. J., and Daetwyler, H. D. (2016). Improving genetic gain with genomic selection in autotetraploid potato. The plant genome, 9(3).

Spindel, J., Begum, H., Akdemir, D., Virk, P., Collard, B., Redon˜ a, E., Atlin, G., Jannink, J.-L., and McCouch, S. R. (2015). Genomic selection and association mapping in rice (oryza sativa): effect of trait genetic architecture, train- ing population composition, marker number and statistical model on accuracy of rice genomic selection in elite, tropical rice breeding lines. PLoS genetics, 11(2):e1004982.

Takagi, H., Abe, A., Yoshida, K., Kosugi, S., Natsume, S., Mitsuoka, C., Uemura, A., Utsushi, H., Tamiru, M., Takuno, S., et al. (2013). Qtl-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of dna from two bulked populations. The Plant Journal, 74(1):174–183.

Tayeh, N., Aubert, G., Pilet-Nayel, M.-L., Lejeune-He´naut, I., Warkentin, T. D., and Burstin, J. (2015). Genomic tools in pea breeding programs: status and perspectives. Frontiers in plant science, 6.

Thaliana, A. (2000). Genome. Nature, 408(6814):791–791.

Thoen, M. P., Davila Olivas, N. H., Kloth, K. J., Coolen, S., Huang, P.-P., Aarts, M. G., Bac-Molenaar, J. A., Bakker, J., Bouwmeester, H. J., Broekgaarden, C., et al. (2017). Genetic architecture of plant stress resistance: multi-trait genome- wide association mapping. New Phytologist, 213(3):1346–1362.

Tobler, A. R., Short, S., Andersen, M. R., Paner, T. M., Briggs, J. C., Lambert, S. M., Wu, P. P., Wang, Y., Spoonde, A. Y., Koehler, R. T., et al. (2005). The snplex genotyping system: a flexible and scalable platform for snp genotyping. Journal of biomolecular techniques: JBT, 16(4):398.

Vikram, P., Swamy, B. M., Dixit, S., Trinidad, J., Cruz, M. T. S., Maturan, P. C., Amante, M., and Kumar, A. (2016). Linkages and interactions analysis of major effect drought grain yield qtls in rice. PloS one, 11(3):e0151532.

Villamar, R., Liu-Ba, G., Legavre, T., and Viot, C. (2016). Los compuestos orgánicos volátiles, defensa natural del al- godo´ n# gossypium hirsutum# mejorable gracias a la biotecnología. cibb-ba-eo-061.

Viot, C. (2016). La biotecnología y su utilización en conservación y caracterización de los recursos genéticos de# gossypium barbadense# y en mejoramiento del algodón.
Wang, J., Yu, H., Weng, X., Xie, W., Xu, C., Li, X., Xiao, J., and Zhang, Q. (2014). An expression quantitative trait loci- guided co-expression analysis for constructing regulatory network using a rice recombinant inbred line population. Journal of experimental botany, 65(4):1069–1079.
Wang, W., Cao, X. H., Micla˘us, , M., Xiong, W., and Xu, J.-H. (2017). The promise of agriculture genomics. International journal of genomics, 2017.
Xu, Y., Jia, Q., Zhou, G., Zhang, X.-Q., Angessa, T., Broughton, S., Yan, G., Zhang, W., and Li, C. (2017). Characterization of the sdw1 semi-dwarf gene in barley. BMC plant biology, 17(1):11.
Yano, K., Yamamoto, E., Aya, K., Takeuchi, H., Lo, P.-c., Hu, L., Yamasaki, M., Yoshida, S., Kitano, H., Hirano, K., et al. (2016). Genome-wide association study using whole-genome sequencing rapidly identifies new genes influencing agronomic traits in rice. Nature genetics, 48(8):927–934.

Zhang, D., Li, J., Compton, R. O., Robertson, J., Goff, V. H., Epps, E., Kong, W., Kim, C., and Paterson, A. H. (2015). Comparative genetics of seed size traits in divergent cereal lineages represented by sorghum (panicoidae) and rice (ory-zoidae). G3: Genes, Genomes, Genetics, 5(6):1117–1128.

Zhang, J., Chen, L.-L., Xing, F., Kudrna, D. A., Yao, W., Copetti, D., Mu, T., Li, W., Song, J.-M., Xie, W., et al. (2016). Extensive sequence divergence between the reference genomes of two elite indica rice varieties zhenshan 97 and minghui 63. Proceedings of the National Academy of Sciences, 113(35):E5163–E5171.

Zhao, H., Lou, Y., Sun, H., Li, L., Wang, L., Dong, L., and Gao, Z. (2016). Transcriptome and comparative gene expression analysis of phyllostachys edulis in response to high light. BMC plant biology, 16(1):34.

Zhou, T., Du, L., Wang, L., Wang, Y., Gao, C., Lan, Y., Sun, F., Fan, Y., Wang, G., and Zhou, Y. (2015). Genetic analysis and molecular mapping of qtls for resistance to rice black- streaked dwarf disease in rice. Scientific reports, 5.
Cómo citar
Jazayeri, S. M., & Torres, R. (2017). Enfoques genómicos y transcriptómicos hacia la selección de plantas. Journal of Science and Research: Revista Ciencia E Investigación, 2(8), 54-64. https://doi.org/https://doi.org/10.26910/issn.2528-8083vol2iss8.2017pp54-64
Artículo de Revisión