Técnicas de machine Learning para la detección de Ransomware: Revisión sistemática de Literatura
Palabras clave:
Ransomware, Aprendizaje Automático, Aprendizaje Profundo, Algoritmos, Detección de Malware.Resumen
El ransomware es uno de los problemas de seguridad informática más críticos, es un tipo de malware que cifra o bloquea la información de la víctima para solicitar el pago de un rescate y devolverles el acceso a sus datos. La presente investigación tuvo el propósito de identificar las técnicas y/o algoritmos de Machine Learning (ML) utilizadas para la detección y clasificación de las diferentes familias ransomware, así como las herramientas de software que se utilizan para la aplicación de estos algoritmos. Está revisión sistemática de literatura (RSL) se apoyó en la metodología propuesta por Bárbara Kitchenham y en el uso de la herramienta Parsifal. Los resultados obtenidos muestran que los algoritmos y/o técnicas de machine learning más utilizados son: Random Forest (RF) con el 23 %, Decisión Tree (DT) con un 14 %, Long Short-Term Memory (LSTM) utilizado en un 9 %, Support Vector Machine Learning (SVM) y Deep Neural Network (DNN) con el 6 %. Las herramientas más utilizadas para la aplicación de los algoritmos de machine learning, fueron Cuckoo Sandbox y Weka Framework con el 17 %. Llegando a la conclusión que el machine learning permite detectar en las etapas iniciales patrones de diferentes familias ransomware.
Descargas
Citas
AbdulsalamYa’u, G., Job, G. K., Waziri, S. M., Jaafar, B., SabonGari, N. A., y Yakubu, I. Z. (2019, diciembre). Deep Learning for Detecting Ransomware in Edge Computing Devices Based On Autoencoder Classifier. En 2019 4th International Conference on Electrical, Electronics, Communication, Computer Technologies and Optimization Techniques (ICEECCOT) (pp. 240–243). Mysuru, India: IEEE. Descargado 2022-01-23, de https:// ieeexplore.ieee.org/document/9114576/ doi: 10 .1109/ICEECCOT46775.2019.9114576
Agrawal, R., Stokes, J. W., Selvaraj, K., y Marinescu, M. (2019, mayo). Attention in Recurrent Neural Networks for Ransomware Detection. En ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 3222–3226). Brighton, United Kingdom: IEEE. Descargado 2022-01-23, de https://ieeexplore.ieee.org/document/8682899/ doi: 10.1109/ICASSP.2019.8682899
Al-Hawawreh, M., y Sitnikova, E. (2019, noviembre). Leveraging Deep Learning Models for Ransomware Detection in the Industrial Internet of Things Environment. En 2019 Military Communications and Information Systems Conference (MilCIS) (pp. 1–6). Canberra, Australia: IEEE. Descargado 2022-01-23, de https://ieeexplore.ieee .org/document/8930732/ doi: 10.1109/MilCIS.2019 .8930732
Almomani, I., AlKhayer, A., y Ahmed, M. (2021, abril). An Efficient Machine Learning-based Approach for Android v.11 Ransomware Detection. En 2021 1st International Conference on Artificial Intelligence and Data Analytics (CAIDA) (pp. 240–244). Riyadh, Saudi Arabia: IEEE.
Descargado 2022-01-23, de https://ieeexplore.ieee .org/document/9425059/ doi: 10.1109/CAIDA51941 .2021.9425059
Almousa, M., Osawere, J., y Anwar, M. (2021, septiembre). Identification of Ransomware families by Analyzing Network Traffic Using Machine Learning Techniques. En 2021 Third International Conference on Transdisciplinary AI (TransAI) (pp. 19–24). doi: 10.1109/TransAI51903 .2021.00012
Alrawashdeh, K., y Purdy, C. (2018, julio). Ransomware Detection Using Limited Precision Deep Learning Structure in FPGA. En NAECON 2018 - IEEE National Aerospace and Electronics Conference (pp. 152–157). Dayton, OH, USA: IEEE. Descargado 2022-01-23, de https://ieeexplore.ieee.org/document/8556824/ doi: 10.1109/NAECON.2018.8556824
Alzahrani, N., y Alghazzawi, D. (2019, noviembre). A
Review on Android Ransomware Detection Using Deep Learning Techniques. En Proceedings of the 11th International Conference on Management of Digital EcoSystems (pp. 330–335). Limassol Cyprus: ACM. Descargado: 2022-01-23, de https://dl.acm.org/doi/10.1145/3297662.3365785 doi: 10.1145/3297662.3365785
Arabo, A., Dijoux, R., Poulain, T., y Chevalier, G. (2020). Detecting Ransomware Using Process Behavior Analysis. 2022-01-23, de https://linkinghub.elsevier.com/ retrieve/pii/S1877050920303884 doi: 10 .1016/j.procs.2020.02.249
Aurangzeb, S., Bin Rais, R., Aleem, M., Islam, M., y Iqbal, M. (2021). On the classification of MicrosoftWindows ransomware using hardware profile. PeerJ Computer Science, 7, 1–24. doi: 10.7717/peerj-cs.361
Basnet, M., Poudyal, S., Ali, M. H., y Dasgupta, D. (2021, septiembre). Ransomware Detection Using Deep Learning in the SCADA System of Electric Vehicle Charging Station. En 2021 IEEE PES Innovative Smart Grid Technologies Conference - Latin America (ISGT Latin America) (pp. 1–5). (ISSN: 2643-8798) doi: 10.1109/ ISGTLatinAmerica52371.2021.9543031
Bello, I., Chiroma, H., Abdullahi, U. A., Gital, A. Y., Jauro, F., Khan, A., ... Abdulhamid, S. M. (2021, septiembre). Detecting ransomware attacks using intelligent algorithms: recent development and next direction from deep learning and big data perspectives. Journal of Ambient Intelligence and Humanized Computing, 12(9), 8699–8717. Descargado 2022-01-23, de https://link.springer.com/10.1007/s12652-020-02630-7 doi: 10.1007/s12652-020-02630-7
Brereton, P., Kitchenham, B. A., Budgen, D., Turner, M., y Khalil, M. (2007). Lessons from applying the systematic literature review process within the software engineering domain. Journal of systems and software, 80(4), 571–583.
Chadha, S., y Kumar, U. (2017, mayo). Ransomware: Let’s fight back! En 2017 International Conference on Computing, Communication and Automation (ICCCA) (pp. 925– 930). Greater Noida: IEEE. Descargado 2022-01-23, de http://ieeexplore.ieee.org/document/8229926/ doi: 10.1109/CCAA.2017.8229926
Corporation for Digital Scholarship. (2022, 01 03). Zotero. Retrieved from https://www.zotero.org/
Cusack, G., Michel, O., y Keller, E. (2018, marzo). Machine Learning-Based Detection of Ransomware Using SDN. En Proceedings of the 2018 ACM International Workshop on Security in Software Defined Networks & Network Function Virtualization (pp. 1–6). Tempe AZ USA: ACM. Descargado 2021-12-10, de https://dl.acm.org/doi/10.1145/3180465.3180467 doi: 10.1145/3180465.3180467
Daku, H., Zavarsky, P., y Malik, Y. (2018, agosto).
Behavioral-Based Classification and Identification of Ransomware Variants Using Machine Learning. En 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE) (pp. 1560–1564). New York, NY, USA: IEEE. Descargado 2022-01-23, de https://ieeexplore.ieee.org/document/8456093/ doi: 10.1109/TrustCom/BigDataSE.2018.00224
Ganta, V. G., Harish, G., Kumar, V., y Rao, G. K. (2020, noviembre). Ransomware Detection in Executable Files Using Machine Learning. En 2020 International Conference on Recent Trends on Electronics, Information, Communication & Technology (RTEICT) (pp. 282– 286). Bangalore, India: IEEE. Descargado 2022-01-23, de https://ieeexplore.ieee.org/document/9315672/ doi: 10.1109/RTEICT49044.2020.9315672
Hirano, M., y Kobayashi, R. (2019, octubre). Machine Learning Based Ransomware Detection Using Storage Access Patterns Obtained From Live-forensic Hypervisor. En 2019 Sixth International Conference on Internet of Things: Systems, Management and Security (IOTSMS) (pp. 1– 6). Granada, Spain: IEEE. Descargado 2022-01-23, de https://ieeexplore.ieee.org/document/8939214/ doi: 10.1109/IOTSMS48152.2019.8939214
IEEE. (2022). IEEE. Retrieved from https://www.ieee.org/publications/services/thesaurus.html
Khan, F., Ncube, C., Ramasamy, L. K., Kadry, S., y Nam, Y. (2020). A Digital DNA Sequencing Engine for Ransomware Detection Using Machine Learning. IEEE Access, 8, 119710–119719. Descargado 2022-01-23, de https://ieeexplore.ieee.org/document/9121260/ doi: 10.1109/ACCESS.2020.3003785
Kitchenham, B. (2004). Procedures for Performing Systematic Reviews. , 33.
Maniath, S., Ashok, A., Poornachandran, P., Sujadevi, V., Sankar A.U., P., y Jan, S. (2017, octubre). Deep learning LSTM based ransomware detection. En 2017 Recent Developments in Control, Automation & Power Engineering (RDCAPE) (pp. 442–446). Noida: IEEE. Descargado 2022-01-23, de https://ieeexplore.ieee.org/ document/8358312/ doi: 10 .1109/RDCAPE .2017.8358312
Manzano, C., Meneses, C., y Leger, P. (2020, noviembre). An Empirical Comparison of Supervised Algorithms for Ransomware Identification on Network Traffic. En 2020 39th International Conference of the Chilean Computer Science Society (SCCC) (pp. 1–7). Coquimbo, Chile: IEEE. Descargado 2022-01-23, de https:// ieeexplore.ieee.org/document/9281283/ doi: 10 .1109/SCCC51225.2020.9281283
Monje, G., y Alexander, R. (2018). SEGURIDAD INFORMÁTICA Y EL MALWARE. , 11.
Noorbehbahani, F., Rasouli, F., y Saberi, M. (2019). Analysis of machine learning techniques for ransomware detection. En 2019 16th international isc (iranian society of cryptology) conference on information security and cryptology (iscisc) (pp. 128–133).
Noorbehbahani, F., y Saberi, M. (2020, octubre). Ransomware Detection with Semi-Supervised Learning. En 2020 10th International Conference on Computer and Knowledge Engineering (ICCKE) (pp. 024–029). Mashhad, Iran: IEEE. Descargado 2022-01-23, de https:// ieeexplore.ieee.org/document/9303689/ doi: 10 .1109/ICCKE50421.2020.9303689
Parsifal. (2022). Parsifal. Retrieved from https://parsif.al/
Petticrew, M., y Roberts, H. (2008). Systematic Reviews in the Social Sciences: A Practical Guide. John Wiley & Sons. (Google-Books-ID: ZwZ1_xU3E80C)
Sahin, M., y Bahtiyar, S. (2020, noviembre). A Survey on Malware Detection with Deep Learning. En 13th International Conference on Security of Information and Networks (pp. 1–6). New York, NY, USA: Association for Computing Machinery. Descargado 2022-01-23, de https://doi.org/10.1145/3433174.3433609 doi: 10.1145/3433174.3433609
Sethi, K., Chaudhary, S. K., Tripathy, B. K., y Bera, P. (2017, octubre). A novel malware analysis for malware detection and classification using machine learning algorithms. En Proceedings of the 10th International Conference on Security of Information and Networks (pp. 107– 113). New York, NY, USA: Association for Computing Machinery. Descargado 2022-01-23, de https:// doi.org/10.1145/3136825.3136883 doi: 10.1145/ 3136825.3136883
Sharma, P., Chaudhary, K., Khan, M., y Wagner, M. (2019, diciembre). Ransomware Noise Identification and Eviction Through Machine Learning Fundamental Filters. En 2019 IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE) (pp. 1–8). Melbourne, Australia: IEEE. Descargado 2022-01-23, de https:// ieeexplore.ieee.org/document/9162376/ doi: 10.1109/CSDE48274.2019.9162376
Sharma, S., Krishna, C. R., y Kumar, R. (2020, noviembre). Android Ransomware Detection using Machine Learning Techniques: A Comparative Analysis on GPU and CPU. En 2020 21st International Arab Conference on Information Technology (ACIT) (pp. 1–6). Giza, Egypt: IEEE. Descargado 2022-01-23, de https://ieeexplore.ieee.org/document/9300108/ doi: 10.1109/ACIT50332 .2020.9300108
Sharma, S., Krishna, C. R., y Kumar, R. (2021, junio). RansomDroid: Forensic analysis and detection of Android Ransomware using unsupervised machine learning technique. Forensic Science International: Digital Investigation, 37, 301168. Descargado 2022-01-23, de https://linkinghub.elsevier.com/retrieve/pii/S2666281721000767 doi: 10.1016/j.fsidi.2021.301168
Shaukat, S. K., y Ribeiro, V. J. (2018, enero). RansomWall: A layered defense system against cryptographic ransomware attacks using machine learning. En 2018 10th International Conference on Communication Systems & Networks (COMSNETS) (pp. 356–363). Bengaluru: IEEE. Descargado 2022-01-23, de http://ieeexplore.ieee.org/document/8328219/ doi: 10.1109/COMSNETS .2018.8328219
Siłka, J. (2021). Bidirectional long short-term memory classifier assist for intelligent ransomware detection in Android OS. En (Vol. 2915, pp. 45–53). (ISSN: 1613-0073)
Su, D., Liu, J., Wang, X., y Wang, W. (2019). Detecting Android Locker-Ransomware on Chinese Social Networks. IEEE Access, 7, 20381–20393. Descargado 2022-01-23, de https://ieeexplore.ieee.org/document/8580446/ doi: 10.1109/ACCESS.2018.2888568
Takeuchi, Y., Sakai, K., y Fukumoto, S. (2018, agosto). Detecting Ransomware using Support Vector Machines. En Proceedings of the 47th International Conference on Parallel Processing Companion (pp. 1–6). Eugene OR USA: ACM. Descargado 2022-01-23, de https:// dl.acm.org/doi/10.1145/3229710.3229726 doi: 10.1145/3229710.3229726
Veloz, F. D. B., López, L. I. B., Valdivieso, L., y Álvarez, M. B. H. (2020). Indicadores para la detección de ataques. , 15.
Verma, M., Kumarguru, P., Brata Deb, S., y Gupta, A. (2018, noviembre). Analysing Indicator of Compromises for Ransomware: Leveraging IOCs with Machine Learning Techniques. En 2018 IEEE International Conference on Intelligence and Security Informatics (ISI) (pp. 154– 159). Miami, FL: IEEE. Descargado 2022-01-23, de https://ieeexplore.ieee.org/document/8587409/ doi: 10.1109/ISI.2018.8587409
Victoriano, O. B. (2019, octubre). Exposing Android Ransomware using Machine Learning. En Proceedings of the 2019 International Conference on Information System and System Management (pp. 32–37). Rabat Morocco: ACM. Descargado 2022-01-23, de https://dl.acm.org/doi/10.1145/3394788.3394923 doi: 10.1145/3394788 .3394923
Wan, Y.-L., Chang, J.-C., Chen, R.-J., y Wang, S.-J. (2018, abril). Feature-Selection-Based Ransomware Detection with Machine Learning of Data Analysis. En 2018 3rd International Conference on Computer and Communication Systems (ICCCS) (pp. 85–88). Nagoya, Japan: IEEE. Descargado 2022-01-23, de https://ieeexplore.ieee .org/document/8463300/ doi: 10.1109/CCOMS.2018 .8463300
Zhang, H., Xiao, X., Mercaldo, F., Ni, S., Martinelli, F., y Sangaiah, A. K. (2019, enero). Classification of ransomware families with machine learning based on N -gram of opcodes. Future Generation Computer Systems, 90, 211– 221. Descargado 2022-01-23, de https://linkinghub.elsevier.com/retrieve/pii/S0167739X18307325doi:10.1016/j.future.2018.07.052
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Journal of Science and Research
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Los autores mantienen los derechos sobre los artículos y por tanto son libres de compartir, copiar, distribuir, ejecutar y comunicar públicamente la obra bajo las condiciones siguientes:
Reconocer los créditos de la obra de la manera especificada por el autor o el licenciante (pero no de una manera que sugiera que tiene su apoyo o que apoyan el uso que hace de su obra).
No utilizar esta obra para fines comerciales.
Declaración de privacidad
Los nombres y direcciones de correo-e introducidos en esta revista se usarán exclusivamente para los fines declarados por esta revista y no estarán disponibles para ningún otro propósito u otra persona.