• Ruperto P. Bonet Universidad Técnica de Babahoyo



This paper report progress on a technique to stabilize the consistent mass SUPG method, when it is used in combination with an explicit scheme to solve shallow water ow problems to steady solutions. According to this a comparison between the use of lumped mass SUPG and consistent mass SUPG method is done. A scale of di usivity in this scheme is developed by means of the introduction of parameter in the mass matrix of the consistent SUPG method and a stability analysis of -SUPG method is presented. Several examples based on the one-dimensional shallow-water equations illustrate the accuracy and e ciency obtained with such methods.

KEYWORDS:  shallow water; steady solutions; parametric method.


Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Ruperto P. Bonet, Universidad Técnica de Babahoyo

Facultad de Finanzas, Administración e Informática Universidad Técnica de Babahoyo. Ecuador.


A.Di Filippo, P. Molinario, R.Pacheco. Stabilization technique of explicit schemes for the numerical solution of the one-dimensional shallow equations". In Proceed-ings of the International Conference on Finite Elements in Fluids, pages 1504{1511, Venezia, 15-21 Octubre 1995.

Benjamin S. Kirk,Steven W. Bova, Ryan B. Bond. The in uence of stabilization parameters in the supg nite element method for hypersonic ows. In 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Ex-position, Orlando, FLorida, 4-7 January 2010.

C.E.Baumann, M.A. Storti and S.R.Idelsohn. Improving the convergence rate of the petrov-galerkin techniques for the solution of transonic and supersonic ows". IJNME, 34:543{568, 1992.

G.C. Christodoulou. On the stability of nite element shallow water ow models", pages 1037{1045. CIMNE/Pineridge Press, 1993.

Gray, W.G. and Lynch, D.R. Times-stepping schemes for nite element tidal model computations". Adv. Water Resources, 1(2):83{95, 1977.

Kinmark,I. The shallow water wave equations: Formulation, analysis and applica-tion", volume 15 of Lecture Notes in Engineering. Springer-Verlag, Berlin, 1985.

M. Kawahara. Shallow Water Finite Elements", chapter 11, pages 261{287. J.T.Oden, ed. computational methods in nonlinear mechanics edition, 1980.

Matias Fernando Benedetto, Stefano Berrone, Andrea Borio, Stefano Scialo. Or-der preserving supg stabilization for the virtual element formulation of advection-di usion problems. Computer Methods in Applied Mechanics and Engineering, 311:18{40, 2016. DOI: 10.1016/j.cma..07.0432016.

Matsuto Kawahara, Norio Takeuchi, Takaharu Yoshida. Two step explicit nite element method for tsunami wave propagation analysis". International Journal for Numerical Methods in Engineering, 12:331{351, 1978.

Mutsuto Kawahara, Hirokazu Hirano, Khoji Tsubota, Kazuo Inagaki. Selective lumping nite element method for shallow water ow". International Journal for Numerical Methods in Fluids, 2:89{112, 1982.

Petr Knobloch. On the choice of the supg parameter at out ow boundary layers. Technical report, Department of Numerical Mathematics, Faculty of Mathematics and Physics, Charles University, Sokolovska 83, 186 75 Praha 8, Czech Republic, 2007. Preprint No. MATH-knm-2007/3.

R.Lohner, K.Morgan, O.C.Zienkiewicz. The solution of non-linear hyperbolic equa-tion systems by the nite element method". International Journal for Numerical Methods in Fluids, 4:1043{1063, 1984.

Tayfun E. Tezduyar, Masayoshi Senga. Stabilization and shock-capturing parameters in supg formulation of compressible ows. Computer Methods in Applied Mechanics and Engineering, 195:1621{1632, 2006.

T.J.R. Hughes. A simple scheme for developing 'upwind' nite elements. Int. J. Numer. Meth. Engrg., 12:1359{1365, 1978.

T.J.R. Hughes. Recent progress in the development and understanding of supg methods with special reference to the compressible euler and navier-stokes equations". In R.H.Gallagher, R. Glowinski, P.M. Gresho, J.T.Oden and O.C. Zienkiewicz, editor, Finite Elements in Fluids, volume 7, 1987.

T.J.R. Hughes and A.N. Brooks. A multi-dimensional upwind scheme with no cross-wind di usion, chapter FEM for convection dominated ows. ASME, New York, 1979.

T.J.R. Hughes and A.N. Brooks. A theoretical framework for Petrov-Galerkin meth-ods with discontinuous weighting functions: applications to the streamline upwind procedure, volume IV, chapter Finite Elements in Fluids, pages 46{65. Wiley, Lon-don, 1982.

T.J.R. Hughes and M.Mallet. A new nite element formulation for computa-tional uids dynamics: Iii. the generalized streamline operator for multidimensional advective-di usive systems". Comput. Meths. Appl. Mech. Engrg., 58:305{328, 1986.

T.J.R. Hughes and T.E. Tezduyar. Finite element methods for rst-order hyperbolic systems with particular emphasis on the compressible euler equations. Comput. Meths. Appl. Mech. Engrg., 45:217{284, 1984.

T.J.R. Hughes and T.E. Tezduyar. Analysis of some fully discrete algorithms for the one-dimensional heat equation. Int. J.Numer. Meth. Engrg., 21:163{168, 1985.

T.J.R. Hughes, L.P. Franca and M.Mallet. A new nite element formulation for computational uids dynamics: Vi. convergence analysis of the generalized supg formulation for linear time-dependent multidimensional advective-di usive systems".

Comput. Meths. Appl. Mech. Engrg., 63:97{112, 1987.



Resumen 326

Cómo citar

Bonet, R. P. (2017). A PARAMETRIC METHOD FOR THE SHALLOW WATER EQUATIONS. Magazine De Las Ciencias: Revista De Investigación E Innovación, 1(4), 89–102. Recuperado a partir de https://revistas.utb.edu.ec/index.php/magazine/article/view/64